澳门永利娱乐_永利娱乐网址_永利国际娱乐,官网,官方网站,官方网址

    <output id="xj9f1"><th id="xj9f1"></th></output>
    <rp id="xj9f1"><thead id="xj9f1"></thead></rp>

        <mark id="xj9f1"></mark>

        <b id="xj9f1"><address id="xj9f1"></address></b>

        <b id="xj9f1"></b>

            <mark id="xj9f1"></mark>

            Optoelectronic oscillation of the second harmonic of a period-one oscilla...
            Large magnetoresistance effects in Fe3O4
            Design and fabrication of double AlGaN/GaN distributed Bragg reflector st...
            Highly Responsive and Ultrasensitive Non-Enzymatic Electrochemical Glucos...
            High-Temperature Upconverted Single-Mode Lasing in 3D Fully Inorganic Per...
            Ultra-compact four-lane hybrid-integrated ROSA based on three-dimensional...
            Phosphorus-Modulation-Triggered Surface Disorder in Titanium Dioxide Nano...
            Highly Conductive Graphene Paper with Vertically Aligned Reduced Graphene...
            Enhanced electrical performance by modulation-doping in AlGaN-based deep ...
            Face Alignment With Expression- and Pose-Based Adaptive Initialization
            官方微信
            友情链接

            NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density

            2019-04-18

            Authors: Chen, MZ; Hua, WB; Xiao, J; Cortiel, D; Chen, WH; Wang, EH; Hul, Z; Gu, QF; Wangl, XL; Indris, S; Chou, SL; Dou, SX
            NATURE COMMUNICATIONS
            Volume: 10 Published: APR 1 2019 Language: English Document type: Article
            DOI: 10.1038/s41467-019-09170-5
            Abstract:
            The development of low-cost and long-lasting all-climate cathode materials for the sodium ion battery has been one of the key issues for the success of large-scale energy storage. One option is the utilization of earth-abundant elements such as iron. Here, we synthesize a NASICON-type tuneable Na4Fe3(PO4)(2)(P2O7)/C nanocomposite which shows both excellent rate performance and outstanding cycling stability over more than 4400 cycles. Its air stability and all-climate properties are investigated, and its potential as the sodium host in full cells has been studied. A remarkably low volume change of 4.0% is observed. Its high sodium diffusion coefficient has been measured and analysed via first-principles calculations, and its three-dimensional sodium ion diffusion pathways are identified. Our results indicate that this low-cost and environmentally friendly Na4Fe3(PO4)(2)(P2O7)/C nanocomposite could be a competitive candidate material for sodium ion batteries.
            全文链接:https://www.nature.com/articles/s41467-019-09170-5



            关于我们
            下载视频观看
            联系方式
            通信地址

            北京市海淀区清华东路甲35号 北京912信箱 (100083)

            电话

            010-82304210/010-82305052(传真)

            E-mail

            semi@semi.ac.cn

            交通地图
            版权所有 ? 中国科学院半导体研究所

            备案号:京ICP备05085259号 京公网安备110402500052 中国科学院半导体所声明

            Sitemap

            vinbet浩博官网| 爱博官网lovebet| 爱博官网|